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NONLINEAR ANELASTIC BEHAVIOR OF A

SYNTHETIC RUBBER AT FINITE STRAINS

L• by

D. Derman1, Z. Zaphir2 , and S. R. Bodner3

Faculty of Mechanical Engineering
Technion - Israel Institute of Technology

L
A set of constitutive equations has been developed to

represent nonlinear ane].astic behavior , i.e. energy losses and

rate dependent moduli for geometrically large , reversible

defc rmations . These equations are in incremental form and can

be used to solve boundary value problems by numerical methods.

Tw~ problems were considered: thick walled spheres subjected to

c’jcles of internal pressure , and a long rod subjected to imposed

axial velocity (the simple tension test). Experiments were

carried out for both conditions on specimens made of a synthetic

4 rubber at three different temperatures (each under isothermal

conditions) and at different loading rates. Response curves

were calculated based on the constitutive equations and chosen

values of the material constants . Generally good agreement was

obtained between the predicted and experimental result& 
__________

I f f $~ H~ D~
~

N*N
~

OUNCE
~

~Graduate Student ( formerly)

2ora dua te Stud ent 4! 

~ 

_ _ _ _



~
4 _  j —  -

Introduction

Theories of nonlinear viscoelasticity have been proposed

in recent years to account for various nonlinear geometrical

and material effects associated with time dependent deformations

(summarized by Lockett in [1,21). These theories generally

reduce to classical linear viscoelasticity as the limiting con-

dition for small deformations. Linear viscoelasticity can be

placed on a firm axiomatic foundation , Gurtin and Sternberg (3],

and has been extensively developed, but the theoretical bases

of the nonlinear theories are still in a general state, e.g.

Rivlin [4], and detailed development and practical application

of the theories have been slow.

An alternative to specialization of a general theory for

practical representation is to consider particular classes of

j  material response guided by physical considerations and overall

theoretical constraints. The present paper is concerned with a

nonlinear representation of “anelastic” behavior defined slightly

more generally than by Zener (5] as geometrical reversible de-

formation with energy loss. That is, the deformations are

reversible so that the original geometrical state is recovered

upon unloading but the loading and unloading paths do not coin-

cide , i.e., the cycle is not thermodynamically reversible. This

class of material response has received considerable attention
I

since the energy lose for small amplitude reversible deformations

is the well known “internal damping” of materials. Linear

viscoelasticity is generally used to represent internal damping

for small oscillations and extensive studies have been made to
relate th. parameters in th. linear equations to physical energy

dissipation mechanisms in metals and plastics .

— ~~~~~~~~ — ~~~~~~~~~~~~~~~ — •~~
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Relatively little work has been done, however, on formulating

anelastic behavior in the nonlinear range. This paper describes

a procedure for representing nonlinear anelasticity which is

similar to one developed for inelastic (non-reversible) deforma-

tions by Partom and Bodner [6,7,8]. The constitutive equations

consider the increments of both the reversible and the non—rever-

sible deformation rate components to be functions of state quan-

tities and the current geometry. The changes in the state quan-

tities with deformation are given by suitable evolutionary

equations. In this manner, the material response to arbitrary

loading or straining histori~s is ca]~culthle on a step by step

• basis. Anelastic behavior can be considered in a similar manner by

an anelastic stress term , not a state variable, which is a non-

linear function of the total deformation rate and state quantities.

Only reversible deformations are considered in the present paper

but generally both anelasticity and inelasticity can be treated
-a

simultaneously.

Since the deformations are reversible and the total stress

is considered to be decomposable into elastic and anelastic corn-

ponents, the present formulation is essentially equivalent to a

nonlinear generalization of the Kelvin-Voigt viscoelastic model.

Nonlinearity is introduced in the elastic element through the

use of a general nonlinear stress-strain relation whose coeffi-

cients are derived from a strain energy function and by the in-

clusion of a finite strain measure. The anelastic stress is a

nonlinear function of the deformation rat. as well as a function

of the elastic stress. One of the consequences of this approach

is that th. effective “dynamic modulus” and ‘damping’ become un-

coupled so their frequency dependence could be specified s.pa r-

ately which is .ssentially different than linear viscoelastic
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theory .

Lockett in (1,2] classified nonlinear viscoelasticity as

a consequence of various effects “magnitude,” i e stress and

strain amplitude, “interaction,” i.e. different times of load

application, and “intermode,” i.e. changes in direction of load

application. In his terminology, the present formulation attempts

to treat both magnitude and interaction nonlinearity. Intermode

nonlinearity is also implied but only investigated insofar as

two different boundary value problems are treated. There are

a large number of interaction effects which could be examined ,

such as superimposed loading during creep or recovery, and

Lockett has developed a modified Kelvin-Voigt model to treat

such problems [9]. The interaction examples in this paper are

limited to the frequency dependence of the load-elongation

relation during loading and unloading cycles.

A brief review of the theoretical development of the

nonlinear anelastic formulation was presented in (101 where

some results were also given for thick walled hollow spheres

subjected to loading and unloading cycles of internal pressure

under quasi-static and isothermal conditions. This paper gives

a more complete presentation of the basic formulation and

describes and discusses the sphere results in greater detail.

• These spheres were prepared from a synthetic rubber and were

tested at various frequencies and temperatures. In addition,

an extensive study was mad. on the same material for the uniaxial

loading condition based on the same constitutive equations and

material constants . Both analytical and experimental results

for this case were obtained and are discussed in this paper.

—• F — — — •-i -~
~~~~~~~~~~~~~~~~~~ .~~~~m -~~~~~~~~ .
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Nonlinear Anelastic Model

A general set of constitutive equations to represent in-

elastic and anelastic material behavior at finite strains was

initially proposed by Partom Lii]. These were subsequently

developed by Partom and Bodner in a series of papers (6,7,8] to

apply to the elastic—plastic and viscoplastic response of both

non-hardening and strain hardening materials. In this general

formulation, the deformation rate,

di = (1/2 ) (vj • + v ~
) (1)j  ,) j ,

where Vj is the particle velocity , is assumed decomposable into

geometrically reversible and non-reversible components , ~~~ and

~~~ The stress is taken to have an anelastic component a~~ to

account for energy losses (hysteresis) in reversible motions due

to internal non-homogeneities. The elastic stress is a state

quantity. Under these assumptions, the rate of work per unit of

current volume can be expressed as

— (a~~ + c~~ ) (d~~ + d~j) (2)

The deformation rate components and the anelastic stress

ax. considered to be functions of state variables, e.g. c,~~, T,

and ths velocity field. All history and memory effects are

therefore included in the current state quantities and the geo-

astry so that problems could be solved on a direct incremental

basis in time. Thi. makes the formulation readily adoptable to

the computer solution of bou*)dary value problems.

— • • -~~ —~~~~~ • ——• •-~~~
- - •~~
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In the present treatment of anelastic materials , the non-

revers ible deformation rate d~~ is taken to be identically zero

although , in principle , both anelastic and inelastic effects

- could be considered simultaneously. The problem therefore

reduces to determining suitable expressions for d~1 
(subsequently

identified as dii ) and for a~~.

Firstly, suitable constitutive equations are obtained for

as a function of the elastic stress on the basis of non-

linear ( large deformation ) elasticity theory . Using the Almansi

finite strain measure , the relation between the strain rate and

the deformation rate is given by [6 , 12]

- (c
~~j

v
~~~j 

+ c
~j
v
~,i

) (3)

where denotes the total strain. A general expression for the

elastic “true” stress—strain relationship is, from [6] and (14],

— F.c
~ij 

+ F l C
ii 

+ FaC~jC~j (4)

where the coefficients are obtained from strain energy functions

(as described in (6]). Eq. (4) together with the strain energy

functions and the strain rate expression, Eq. (3), would then
define the elastic constitutive equations. An uncoupled form of

the strain energy function was developed in [13] and used sub-

.equ.ntly in [6] and [7]. Since the details of the development

and the resulting constitutive equations are given essentially in

(6] and (7], they will not be repeated here.



— 6 —

Modifications to the previous work were required, however,

to obtain adequate representation in certain cases. In [6] and

[7], the expression for the distortional energy, which is taken

to be uncoupled from the dilatational energy, is written in terms

of the Almansi strain invariarits, E1, E2, as

W5 = 6~ 0(E~ 
— 3E2)/(3 — 2E 1) 2 (5)

where ~io is the classical elastic shear modulus (see also [14]).

Eq. (5) is a particular case of a more general form for W5 based

• on the shear energy being homogeneous of degree zero in the

principal extensions, namely

— ~ 
{ ai (3—2E1)2 + aa (3—4Ei+4E2) } (6)s 8 1 ( 3 — 2 E 1) 2  + $2 (3—4Ei+4E2)

where C and the c*’ s and B’s are constants. In order for the

shear energy to vanish for pure dilatation, 3a1 + a2 = 0, and

to avoid singularities, 3B~ + B~ ~‘ 0. In addition, for small

strains should reduce to the classical value (-2U0 E2). For

ai set equal to unity as a common factor, these conditions lead

to ~a — - 3 and Ba — (1—9 B 1)/3 so that P15 reduces to
-
. 

-‘ 

E2 - 3 EW5 — 2~o (3 — 4E1 + 1281L’ + ~ ( l—9 Bz ) E a  }

Eq. (5) ii obtained from Eq. (7) by setting 82 — 0 (i.e. 8i ~ l/ 9)

which was found adequate for strains up to about 15 to 30% (de-

pending on test temperature). For strains as high as 50 to 100% ,

it was found that nonzero values of 8~ led to better overall rep—

resentat ion of the_experimental results.
-- —~~w~~.- ‘— _________ - ~~~~~ • - __________



p - 7 -

Another modification to the strain energy function was to

introduce weak coupling between the shear and dilatational

energies. This can be done by considering the shear modulus ~i

to depend on the density change due to compressibility , i.e.

= ~0 ( 5 0 ) Y (8)

where

s~ = (p/po)
2 
= 1—2E 1 + 4E2 — 8E3 (9)

and (P/Po ) is the ratio of current to initial density and the
4

E’s are the Almansi strain invariants. For the material and

conditions examined , y could be set equal to zero in most cases

but not all. For completeness, it is noted that the expression

used for the dilatational energy, as in (6] and (7), is

La I
W~, = a(~~-cs) 

[(l So) ~ — 

~ (l So ) ~~
] (10)

where K0 is the bulk modulus and a and 8 are constants that

determine the variation of compressibility with pressure. As

in the previous work , we used a = 1 and B = 2.

The elastic shear modulus Po was taken to be a constant

independent of temperature over the range of temperatures in

which the material behaves in a viscoelastic manner. That is,

the shear modulus value in the rubbery region was taken to be

the constant value . Temperature variations were introduced in
the parameters that make up the time dependence , i.e. in the •
expression for the anelastic stress, which leads to an inter-

relationship between temperature and time which is generally
— -w ‘ —.r- - —. - -
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observed for polymeric materials. It was necessary , however, to

consider Ko to have some temperature dependence to correlate with

the experimental data.

In the present analysis, the anelastic stress term is
J

specifically introduced to account for energy losses under geo-

metrically reversible deformations. In addition, it should repre-

sent other effects such as rate dependent dynamic moduli and tran-

sient effects during creep and stress relaxation. Anelasticity is

associated essentially with shear deformations so that the terms

in the governing law should be the deviatoric components of stress

and deformation rate.

General observations of anelastic effects in many materials

indicate that the dynamic modulus increases with increasing

frequency but that the damping factor, tantS or Q 1, changes only

slightly with frequency over a wide range except near a relaxa-

tion point. The damping factor is defined in the usual manner

tan6 = Wd/21TWe (11)

where Wd and We are respectively the dissipated and the maximum

elastic energy in a cycle per unit original volume. Because of

the above mentioned characteristics of real materials, the standard

viscoelastic models, which specify an interrelation between the

frequency dependence of the dynamic modulus and the damping , can

only be fitted to experimental data in a narrow frequency band .

The present formulation enables the damping and modulus changes

with frequency to be expressed independently although some inter-

action results from the nonlinearity.

I
‘:~I -‘~~~~~

-,-‘ ~~—- - ~~~~~~~~~~~ .
~~~ -. --~

-—- -
~~~~~~~ - -  -- -~~. —~~ -~~~ ~~~~~~~~~~~~~~~~ - - --—. — -. — ——-— 
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Making the anelastic stress term independent of time would

lead to frequency independent energy losses. A proposed expres-

sion for the energy loss term is

~~~~~ 
= f ____ - 

(12)

where f is a constant, the bar symbol indicates the deviatoric

component, and dkkl is the absolute value of the first invariant

of the deformation rate (rate of volume change). Eq. (12) is

similar to a Coulomb type dry friction and implies that the

friction magnitude depends on the ratio of the deviatoric to the

di].atational deformation rates. It is noted that dilatational

deformations would always be present due to nonlinearity and

possible coupling factors and experiments have shown that volume

changes do influence the energy loss factor (15,16].

Rate dependent material response could be introduced by

making depend directly on and the deformation rate.

A proposed equation for this effect is

= 

~~ n~l 
~~ exp(_ a~/ (_ ~ a) h/ 2 ] (13)

where g
~ 
and an are constants and Qa is the second invariant of

the deviatoric component of the deformation rate . Since ~~
is a negative quantity, the minus sign is introduced to make

the term (
~2a ) positive. The series form of Eq. (13) is

analogous to that used to express linear viscoe].astic func-

tions in order to approximate experimental results (Prony

- 
.- - 

Series). Eq. (13) corresponds to an additional increment to

the elastic stress whose magnitude increases with
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deformation rate. Using only Eq. (13) in conjunction with the

previous elastic equations would lead to a rate dependent non-

linear elasticity theory, i.e. the material response would be

rate dependent but fully reversible without energy losses. The
- anelastic effects of importance in the present investigation are

therefore given by Eq. (12) , which provides for rate independent

energy losses , and Eq. (13) for frequency dependent response.

Coupling of these effects will occur, however, because of the

essential nonlinearity of the formulation. The total expression

for the anelastic stress term for the present problem is then

4 
- d N

— ~ + 
~ 

g~ exp(—a~/(—Da) 
1/2 ] (14)

which is used in conjunction with the elastic stress-strain re-

lations to give the set of constitutive equations for anelastic

materials in the solution of boundary value problems. In these

problems , the total stress in the equilibrium equations is the

sum of the elastic and anelastic components.
The constitutive equations consisting of the elastic and

anelastic terms were applied to compute the quasi-static response

of thick walled spherical shells made from a synthetic rubber

subjected to cycles of internal pressure at various frequencies

and at three constant temperatures. A description of these

experiment, on spheres ii given in the next section and a short
- review of the investigation has been presented (10]. In that

- 
application , the equilibrium equation was solved at each step

in tim. at a ni~~er of points along the radial coordinate ac-

cording to the required accuracy. The state (stresses , deforms-

tions , deformation rates ) at the end of each time step were used
— . — -.. - ————-

—
- - 

—
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- as the basis for the calculation of the new quantities at the

next step.

For the uniaxial straining case, the same constitutive

equations were applied to calculate the stress resulting from

extension of a thin long rod of the same synthetic rubber.

4 Tests and corresponding calculations were carried out for three

imposed axial velocities at the same three temperatures. The

calculations were initially based on the same equations and

material constants used for the sphere problem. It was found ,

however, that the use of Eq. (5) for the shear strain energy

limited the predictive capability of the calculations for the

tensile straining problem to a maximum strain of about 30%.

Eq. (5) is derived from the more general expression for

Eqs. (6) and (7 ) ,by  setting the constant 8a 0. Considering

Ba~’0 and using Eq. (7) for W8 in which ( 1 - 9 8 i)  =3 8 k led to very

good fitting of the uniaxial tests results for strains up to

J loot . This change had very little effect on the calculations for

the sphere problem over the range of interest. An auxiliary pro—
-; gram was used to determine Ba based on matching a given point on

the stress-deformation curve fcr a particular crosshead velocity.

The Almansi strains for the uniaxial case are simply

— (1/2) ( 1—A 12 ) for i—j and — 0 for i~j where the Ai are

the extension ratios. It ii noted that the terms IC$kk l and D2

in Eq. (14) could be expressed as function. of Poisson’s Ratio

since 1kk = X 14a +X $ and 22 5’1’~’a + + — (l/3)d
~k.

- 

For uniaxial straining, X 2 X~ - v~ 1, so that dkk — ~i (l—2v)

and 2* — — (l/3)X~(l+v)
2.

The steps in the numerical procedure and the associated block

____ diagram are given as follows:
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I

Procedure Steps:

1. Input of geometric and material parameters and crosshead

(imposed axial) velocity V.

2. Selection of a particular deformation value at which the

computed and experimental values of the axial stress a1

are to be matched.

3. Calculation of Bi by a triple phase Newton-Raphson iteration

procedure using the following conditions:

a) Equalizing the lateral stress to zero.

b) Matching the computed axial stress value to the experi-

• 
I 

mental at the deformation selected at step 2:

a 1 (A~~
0) ) = 0~exp) ( A } ° ~~)

where A~~
0 )  is the extension ratio at the matched point.

c) Requiring the Poisson Ratio to be

v 

~ I ~ =0
4. Using the values of Bi obtained in step 3, the axial stress,

4 a~ , is computed for a series of deformations A~~~ during

loading and unloading using a double phase Newton-Raphson

iteration procedure and applying the conditions (a) and Cc)

described above. The convergence is speeded up by the use

of relaxation factors and using initial values based on

results of the preceding steps.

5. Using the same value of B i ,  step 4 is repeated for other

imposed velocities.

The block diagram of the calculation procedure for uniaxia].
- - 

- 
extension is given on the following page.
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• -
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5. a~~, v1± - 

~~~~~~~~~~~~~~~~~~~~~~~ 
~
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iteration on v to obtain
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¶ Experimental Procedure and Results

• For the thick walled sphere problem, two sets of spheres

having inner-outer diameters of 60 - 120 mm and 75 - 100 mm

were fabricated of a synthetic rubber. To measure the inner

radial displacement, a specially designed extensometer was em-

bedded in the inner cavity prior to casting the sphere as a

single piece . Another extensometer was attached to the outer

surface. The spheres were subjected to rectified sinusoidal

cycles of positive internal pressure by means of a servo con-

trolled pressure system. The pressure and the inner and outer

radial displacements were continually recorded.

Tests were run at a constant temperature in the rubbery

region , +26°C , and at two temperatures in the transition range,

—45°C, -75°C. The onset of the glassy region for this material

was determined to be -85°C. Tests were conducted at the follow-

ing frequencies : 4 x 10~~ Hz , 2.5 x lO~~ Hz , 8 x Hz , and at

two pressure amplitudes. These loading conditions were suffi-

ciently slow so the assumption that inertia effects are absent,

i.e. the deformation is quasi—static, was effectively realized

.4 “ in the experiments.

The tensile specimens were cast as straight lengths of

synthetic rubber 100 mm long having squa re cross sections with

10 mm sides. End tabs were bonded directly to the specimens so

the actual length could be taken as the effective gauge length

and the extension of the machine crosshead would determine the axial

extension ratio A 1. Some measurements were also taken of the

L change in cross section dimensions which is directly related to

1~. Tensile tests were conducted in an Instron machine at the

same temperature s as the sphere tests and at crosehead extension
--- ---- ,- 

~~~.--
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rates of 0.02, 2.0 and 20 cm/mm . Division by the initial length

of 10 cm. would give the initial axial de fo rmation rates.

In [101, it was reported that two terms in the series

expression for (g~ j ) ,  Eq. (13) , were necessary to obtain good

representation for the two decades of frequency of the sphere

tests. This led to five material constants in the anelastic

stress term , Eq. ( 14) ,  namely, a~ , Ct2 , g 1,  g~ and f at each

temperature. In addition, the usual two elastic constants have

to be specified. These seven constants were chosen to give good

correspondence between the experimental and calculated results .

• The same material constants also led to accurate predictions of

uniaxial stress—strain curves with the modification that the

parameter 82 in the W5 expression had to be non-zero to

4 match the large strain respo~nse. As mentioned previously , a

non-zero ~~2 did not influence the calculations for the sphere

problem which were limited to relatively low strains (about 5%).

In the rubbery region, +26°C, it was found that a non-zero

coupling factor y ,  Eqs. (8) arid (9 ) , was more suitable to obtain

good correspondence . As mentioned previous ly , the shear modulus

P. was taken to have a constant value at all the test tempera-

tures while the Lamé coefficient A was taken to be the same at

26°C and —45°C but differed at —75°C near the glass transition

temperature . The values of the various material constants that

lead to good correspondence between the test and calculated
- 

s’ results for both the sphere and uniaxial geometries are listed

in Table 1.

I Results for the pressure-inner radial displacement relation

for the thick walled sphere at -75°C are shown in Fig. 1 for the

thre e fzequ.ncies. The experimental results are shown by the
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continuous curves while the calculated points are indicated by

symbols. Other results for the sphere problem are given in

Figs. 2 ,3,4 at the other test temperatures. The tests at +26°C

in the rubbery region , Fig. 4, show the essential absence of
-

- - 
- 

anelastic effects at that temperature. Unusual behavior was

- :~
- - observed at -45°C at a frequency of 4 x l0~~ Hz , Fig . 3 , which

was corroborated by the calculations.

Experimental uniaxial stress-strain results at -75°C and

—45°C are given in Figs. 5 and 6. On these graphs, the stress

is the “true” stress based on the calculated current cross—

sectional area and the indicated strain is the Cäuchy

axial strain or A1 -1. The loading part of the curves are shown

in Figs. 5 and 6 while Fig. 7 shows a more detailed picture of
- the calculated loading and unloading paths at -75°C for strains

up to 10%. Calculations were also performed at the -75°C con-

dition for the change of Poisson’s Ratio v with strain at two

loading rates , Fig. 8 , where v is defined as

~~~~~~~~~~~~~~~ 
(15)

It is noted that v decreases with both increasing deformation

rate and strain. The value of v at zero b a  Ilg rate and strain

would be given by the standard elastic ation v — A / 2 ( A + p o )

which, for the constants listed in Table 1 at -75°C, would give
v — 0.362 .

~~~~~~ 
-~
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Discussion

The computed deformation response for the spherical and un-

axial geometries based on the analytical formulation showed

fairly good agreement with the experimental results over the
I

range of frequencies and temperatures of the program as shown in

Figs. 1-6. Although only some typical results are shown in these

diagrams, the sphere tests were performed for two different sets

of specimen dimensions at two maximum pressure levels for each

set with equally good correspondence [18]. It was found that the

constitutive equations are capable of reproducing the various

phenomena that were introduced , namely nonlinear rate dependent

response and energy dissipation (hysteresis) upon unloading.
* ~

Figs. 1, 2, and 5 show rate dependent response for both geo-

- 
metries while anelasticity is indicated in the loading-unloading

curves of Figs. 1, 2, 3, and 7.

The main type of nonlinearity inherent in this study is of

the “magnitude” type as defined in [1] and [2]. Linear visco-

elastic behavior leads to the relation

• W6 a (aa)
2 (16)

where a5 is the maximum amplitude of the anelastic stress in

cyclic loading. For the anelastic stress equation, Eq. (14),

• and the material constants given in Table 1 at —75°C, the value

calculated for the power in Eq. (16) for the sphere tests shown in

Fig. 1 would be 2.3 which indicates magnitude nonlinearity.

Another result related to this type of nonlinearity is

obtained by comparing results at alculations based on classical

linear elasticity with th~ nonlinear elastic formulation of the

-.-..~~ r ~~~~~~~~~~~~~~ -
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* sphere problem. At circumferential strains up to about 5% the

deviation between the linear and nonlinear results is small
p

while at 10% strain the deviation rises to about 20%.

A further aspect of nonlinear behavior is found from the

time dependence of the constant strain rate uniaxial tests. It

is found (from the isochronic data of Table 2) that the stress

at given times does not depend linearly on the velocity. The

data in Table 2 for tests at -75°C indicates that the response

is close to linear up to 0.2 minutes, after which it becomes

nonlinear from 0.4 to 2 minutes and subsequently reapproaches

• linearity after about four minutes.

Rate dependent response is shown in both the pressurized

sphere and uniaxial tension tests. In both types of experiments

the effective modulus increases with loading frequency or axial

velocity. The material parameters in the •constitutive equa-

tion responsible for this behavior are: C t i ,  C t 2 ,  gj, g2 .  These

were determined to fi t  the pressurized sphere tests and were

then applied to the uniaxial tension tests. Good matching is

achieved in both types of loading, e.g. Figs. 1, 2, 5 and 6.

The damping loss factor is defined by Eq. (11). It is

interesting to note that it does show some frequency dependence

due to nonlinear interactions. The computed values of the loss

factor for the pressurized spheres at —75 C and at a peak pres-

sure of 10 N/ca’ are: 0.21, 0.28, and 0.26 at the loading fre—

quencies of 4 x b0~~, 2.5 x b0 ’, and B x b0 ’ Hz respectively

These values agree well with damping measurements of low ampli—

tude free vibration torsion tests carried out at comparable f re-

qu.ncies . At a peak pressure of 40 N/cm2 the computed loss ]
factors at the same three frequencies are : 0.072, 0.096 and 0.088
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which shows an overall decrease with increasing amplitude.

Uniaxial tension tests were performed only in loading (no

unloading). However, the computed results, Fig. 7, do show

that the hysteresis loop area, and therefore tan 6, depends on

the imposed velocity for this loading mode as well. Again it

is observed that tan 6 decreases with increasing rate of

deformation.

The calculated values of Poisson ’s Ratio, Fig. 8, also show

a deformation rate dependence. We do not have experimental values

to compare to the calculated ones, but another investigation on

• dilatometric properties of a similar rubber (17] showed a

similar trend for Poisson ’s Ratio. That is, a decrease in

deformation rate resulted in higher values of Poisson ’s Ratio

corresponding to smaller volumetric changes during extension

tests. Poisson’s Ratio is also strain dependent which is

shown in the calculated results of Figure 8.

The response of the tested material is observed to be more

rigid near the origin of the stress-strain curve than at large

strains. This is expressed by a steep slope near the origin,

e.g., Figs. 1, 2, 5, 7. In the calculations, this is a conse-

quence of the friction term in the anelastic stress expression.

In the pressurized sphere tests, unusual behavior was ob-

served at -45°C and a frequency of 4 x i0~~ Hz in both the

tests and the calculated results, Figure 3. The calculated

amplitude at which hysteresis disappears is controlled by the

coefficient g,. The reason for this behavio r is not clear but
T the fact that it is obtained experimentally and is also predicte d

by the analytical formulation is an indication of the represent s—

- -  
tion capability of the theory.
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Good matching of the uniaxial experimental results up to

about 40% strain at -75°C and 100% at -45°C could be obtained

through the modification of the elastic distortion energy

by including a non-zero value for the 82 coefficient. With

82~ O, matching is limited to strains of only 15% at -75°C. It

seems that the restriction to fitting results with the more

general expression for W5, Eqs. (6) and (7), lies in its mono—

tonic nature. The material stress-strain curve at -75°C is

characterized by an inflexion point which could be accomodated

if the elastic shear energy function, W8, consisted of poly-

nomials higher than the second. It could then allow matching

of stress—strain curves having inflexion points as well. Such

functions will , however , require a large number of coefficients

which will create computational and experimental prob lems in

their adequate determination. It therefore seems that inflexion

points of the stress-strain curve impose the practical limit

of application of the present theoretical model.

The uncoupled strain energy form was found to result in

good matching of experimental and calculated results in the

transition region (— 45°C , -75°C) . However, in order to obtain

good matching of the detailed test results for both sets of

sphere specimens and for the uniaxial specimens in the rubbery

region, 26°C, the coupled energy form had to be used. At that

temperature, the pressure-radial displacement curves of the

thinner walled spheres (75mm - 100mm diameter) and the uniaxial

stress-strain curves were extremely steep at the origin . This

behavior can be predicted from the calculations by the use of

the coupled form of the strain energy function.

———————————-— - --5-_•__--__-•—_. ,—-=--—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • & ‘~-~— •
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I.
In conclusion, the overall results show that the representa-

tion capability of the analytical model is fairly good for most

engineering purposes. The mathematical formulation is relatively

simple and enables accurate determination of the material para-

meters. Since the constitutive equations are in differential

form , they can be readily incorporated into numerical procedures

for solving stress analysis problems by step by step methods.

The results obtained for both the spherical and uniaxial geo-

metries encourage the continuation of testing and evaluation of

the theoretical model.

-I-
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List of Captions

Fig. 1 - Experimental and calculated results for the pressure-
inner radial displacement relation of a thick walled
synthetic rubber sphere at —75°C.

Fig. 2 - Experimental and calculated results for the pressure-
inner radial displacement relation of a thick walled
synthetic rubber sphere at -45°C.

Fig. 3 - Experimental and calculated results for the pressure-
inner radial displacement relation of a thick walled
synthetic rubber sphere at -45°C and 4 x b0~~ Hz.

- 
Fig. 4 - Experimental and calculated results for the pressure-

• inner radial displacement relation of a thick walled
• 

- synthetic rubber sphere at 26°C.

Fig. 5 - Experimental and calculated uniaxial stress-strain
curves for a synthetic rubber at —75°C.

Fig. 6 -
~ Experimental and calculated uniaxial stress—strain

curves for a synthetic rubber at —45°C.

• Fig. 7 - Calculated uniaxial loading and unloading stress-strain
relations for a synthetic rubber at -75°C.

Fig. 8 - Calculated dependence of Poisson’s Ratio on crosshead
velocity and strain for a synthetic rubber at -75°C.
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TABLE 2
1- ’

Isochrones from Uniaxial Tests at -75°C.

True stress Lkg/cm’J after a Cross
period of minutes: Head

Speed
4 2 0.4 0.2 0.1 [ca/mm ]

0.45 0.232 0.056 0.02

45.4 21.2 5.06 2.83 1.60 2.0

58.5 28.0 16.3 20.0

A
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